教員名 : Bishnu Kumar Adhikary
|
授業科目名
Introductory Statistics for Economics
(英語名)
Introductory Statistics for Economics
科目区分
専門教育科目
General Courses
対象学生
国際商経学部
学年
学年指定なし
ナンバリングコード
KCCBG1MCA7
単位数
2.00単位
ナンバリングコードは授業科目を管理する部局、学科、教養専門の別を表します。詳細は右上の?から別途マニュアルをダウンロードしてご確認ください。
授業の形態
講義・演習 (Lecture/Seminar)
開講時期
2024年度後期
(Fall semester)
担当教員
Bishnu Kumar Adhikary
所属
School of Economics and Management
授業での使用言語
英語
関連するSDGs目標
目標1/目標3
オフィスアワー・場所
11:30 -17:00
School of Economics and Management, Room A317 (Research Building 1) 連絡先
By appointment only. (adhikarykobejp@gmail.com)
対応するディプロマ・ポリシー(DP)・教職課程の学修目標
二重丸は最も関連するDP番号を、丸は関連するDPを示します。
学部DP
1◎/4◎/1〇
研究科DP
1◎/2◎
全学DP
4-1◎
教職課程の学修目標
目標1:磨き続ける力/ー
講義目的・到達目標
This course aims to provide an understanding of the basic statistical tools for business and economic data analysis. In this course, the students will first learn how to arrange and present data graphically. Then, they will learn statistical tools such as mean, mode, median, variance, standard deviation, sampling, confidence intervals, hypothesis testing, correlation, and simple linear regression. This course is a foundation for advanced electives in business data analysis.
After completing the course, students will learn to apply statistical tools and techniques for analyzing economic and financial data. The course is helpful for any business student interested in applying quantitative tools and techniques for data analysis. 授業のサブタイトル・キーワード
Sample, population, mean, variance, correlation, regression
講義内容・授業計画
Lecture 1
Introduction and overview of the course: Understanding types of data, data points, and databases. Lecture 2 Group data and ungroup data- frequency distribution Lecture 3 Pictorial presentation of data: line, bar diagram, pie chart, radar, and combo Lecture 4 Data analysis tools: Mean, mode, median, maxima, and minima Lecture 5 Range, variance, standard deviation Lecture 6 Understanding Probability Lecture 7 Mid-term evaluation Lecture 8 Sampling techniques Lecture 9 Confidence intervals Lecture 10 Hypothesis testing Lecture 11 Correlation Lecture 12 Review of assignments Lecture 13 Basics of ordinary least square model (OLS) Week 14 Understanding results of OLS- significance of the variables and goodness of fit of the model Week 15 Final evaluation 教科書
Business Statistics, 3e, Robert A Donnelly, 2020, Pearson Education Ltd., ISBN: 9780134687018
参考文献
事前・事後学習(予習・復習)の内容・時間の目安
アクティブ・ラーニングの内容
To measure the course objectives, students will be assessed based on their conceptual and quantitative skills in understanding and solving problems. There will be a mid-term and a final exam to assess students’ conceptual and quantitative skills. Besides, the students will be given some exercises and problems as a home task to measure their conceptual and quantitative skills. In addition, class participation and attendance will be considered to assess students’ interest in statistics. Therefore, you are expected to review PowerPoint materials in advance for about 30 hours. For the mid-term and final evaluation, I suggest you to review class exercises and problems for at least two hours after the class or at home, in total 30 hours.
成績評価の基準・方法
Grading Methods: Contribution to classroom discussions (10%), Assignment (20%), Mid-term exam (30%), and a final exam (40%)
課題・試験結果の開示方法
In the classroom
履修上の注意・履修要件
This course is open to anyone, irrespective of specialization. However, i suggest attending the class on time and regularly.
実践的教育
備考
The course is helpful for any business student interested in applying quantitative tools and techniques for data analysis.
英語版と日本語版との間に内容の相違が生じた場合は、日本語版を優先するものとします。
|