シラバス情報

授業科目名
Introduction to Data Science (A)
(英語名)
Introduction to Data Science (A)
科目区分
全学共通科目
-
対象学生
国際商経学部
学年
1年
ナンバリングコード
IACBG1GCA7
単位数
2単位
ナンバリングコードは授業科目を管理する部局、学科、教養専門の別を表します。詳細は右上の?から別途マニュアルをダウンロードしてご確認ください。
授業の形態
講義・演習 (Lecture/Seminar)
開講時期
2025年度後期
(Fall semester)
担当教員
稲垣 紫緒
所属
School of Economics and Management
授業での使用言語
英語
関連するSDGs目標
目標9
オフィスアワー・場所
After class in the classroom
連絡先

対応するディプロマ・ポリシー(DP)・教職課程の学修目標
二重丸は最も関連するDP番号を、丸は関連するDPを示します。
学部DP
研究科DP
全学DP
4-1◎/4-2〇
教職課程の学修目標

講義目的・到達目標
【Course Objectives】
   To acquire fundamental knowledge of data science necessary for future specialized studies.


【Learning Outcome】
   To gain basic knowledge of various data analysis methods through hands-on exercises on a PC, ultimately enabling the application of analytical techniques.

授業のサブタイトル・キーワード
Data Science,Microsoft Excel,Python
講義内容・授業計画
By experiencing and understanding data analysis through PC-based exercises, students will acquire fundamental knowledge that enables them to apply it.

#1      Orientation
        Course Overview
        ICT Services for Academic Learning on Campus (1)

#2      ICT Services for Academic Learning on Campus (2)
      -- Data Science in Modern Society --
        AI and machine learning

#3      Information Ethics
      -- Ethics in Data Science and AI Use --

#4      Information Security
      -- How to protect Data and Compliance Issues --

#5      Basic PC Operations
      -- Open, edit, save, and close files / Create folders --

#6      Excel (1)
      -- Create data files / Functions: SUM, AVERAGE --

#7      Excel (2)
      -- Assignment for Excel --

#8      Midterm exam

#9       Python (1)
      -- Python and Jupyter notebook Set-up --

#10      Python (2)
      -- Input and output --

#11      Python (3)
      -- Import data --

#12      Python (4)
      -- Visualization --

#13      Python (5)
      -- Iterative procedure: FOR statement --

#14      Python (6)
      -- Conditionals: IF statement --

#15      Comprehensive Report Assignment

教科書
Distribute materials as required.
参考文献
Asakura Shoten, Publisher. Introduction to Data Science. Data Science with Python using business data
Kodansha. Data Science for Liberal Arts Students

事前・事後学習(予習・復習)の内容・時間の目安
The time required for preparation and review is generally as follows, but the details will be explained by the instructor as needed.

Preparation: 15 hours over 15 sessions to ensure students understand and review all content from previous sessions.
Review: Submission of assignments and reports for each session (16 hours for 8 sessions after the 8th session).
    Reviewing handouts and other materials distributed by the instructor:
        21 hours for 7 sessions up to the 7th session.
        8 hours for 8 sessions after the 8th session.

アクティブ・ラーニングの内容
Not applicable
成績評価の基準・方法
Absences without a valid reason, such as illness (unauthorized absences), are not permitted.
Grading will be based on quizzes (40%) and assignments (60%).

課題・試験結果の開示方法
Feedback will be provided during class explanations or through the class profile function of UNIVERSAL PASSPORT. Details will be explained by the instructor as needed.
履修上の注意・履修要件
All classes in this course will be conducted in a hybrid format, combining face-to-face sessions and online participation via Zoom. Online access is available for students who are unable to enter Japan or need to stay at home for medical reasons.

For the online classroom, students will need a stable Wi-Fi connection and a PC with MS Office (desktop version) and the Zoom application installed.

Students who do not fully understand the class content or are unable to complete assignments should review the material, ask questions to the instructor, and submit their assignments accordingly.

Students who receive warnings for poor attendance—such as repeatedly entering and leaving lectures without reason, frequent unexcused absences, or engaging in private conversations—should be aware that they may be prohibited from attending further classes.

For more details, students should review the information provided during the orientation and the introduction of the first session before enrolling in the course.

実践的教育
Not applicable
備考
英語版と日本語版との間に内容の相違が生じた場合は、日本語版を優先するものとします。