シラバス情報

授業科目名
研究ゼミナールⅡ
(英語名)
Research Seminar II (J)
科目区分
専門教育科目
対象学生
国際商経学部
学年
3年
ナンバリングコード
KCCBK3MCA3
単位数
2単位
ナンバリングコードは授業科目を管理する部局、学科、教養専門の別を表します。詳細は右上の?から別途マニュアルをダウンロードしてご確認ください。
授業の形態
演習 (Seminar)
開講時期
2025年度前期
担当教員
森谷 義哉
所属
国際商経学部
授業での使用言語
日本語
関連するSDGs目標
目標4
オフィスアワー・場所
火曜日/昼休み(12:10-13:00)/教員研究室
連絡先
  1. メールアドレス(初回の授業資料に記載)
  2. 質問 Q & A 回答(クロスプロファイル)

対応するディプロマ・ポリシー(DP)・教職課程の学修目標
二重丸は最も関連するDP番号を、丸は関連するDPを示します。
学部DP
1◎/3◎
研究科DP
全学DP
教職課程の学修目標

講義目的・到達目標
【講義目的】
現在は、どのような分野においても、必要なデータを正しく収集し、正確に分析して、適切な結論を導く力が重要である。統計学は、そのような力を身につけるための基本的な科目の一つである。このゼミナールでは、データ解析の実践的な知識を習得し、プログラミングを用いて現実的な課題を数理的に考察して結論を導くことができるようになることを目的とする。
さらに、データ解析の経験を通じて、卒業論文の作成に必要な研究姿勢を身につけることも目的とする。
【到達目標】
  1. データ解析の手法を理解し、プログラミングを用いてデータ解析を行うことができる。
  2. 設定したテーマに従って、データ解析の結果を論文にまとめることができる。
  3. 卒業論文に向けて研究テーマの候補を設定することができる。
  4. データ解析の結果や卒業論文の準備に関して適切なプレゼンテーションを行うことができる。
授業のサブタイトル・キーワード
サブタイトル:実践的なデータ解析の知識とスキルを学ぶ。
キーワード:データ解析、プログラミング、Python、R
講義内容・授業計画
【講義内容】
データ解析の実践的な知識とスキルとともに、必要なプログラミングのスキルを説明する。その上で、データ解析やプログラミングのスキルを活用して課題に取り組み、その結果を発表する。
一方で、卒業論文のテーマを設定するための準備(先行研究の調査等)を行い、その結果を発表する。
発表については、学生全員で議論することによって評価する。
【講義計画】
  1. データ解析の方法(1)
  2. プログラミング(1)
  3. データ解析の方法(2)
  4. プログラミング(2)
  5. データ解析の方法(3)
  6. プログラミング(3)
  7. データ解析の方法(4)
  8. プログラミング(4)
  9. データ解析の課題(1)
  10. データ解析の課題(2)
  11. データ解析の課題(3)
  12. データ解析の課題(4)
  13. 卒業論文の準備(1)
  14. 卒業論文の準備(2)
  15. 卒業論文のテーマに関する発表
※パソコンの利用:原則として、毎回使用する。

※研究・卒研ゼミナールの全体的な計画
  1. 研究ゼミナールⅠ(2年次・後期)
    論文の書き方を学習する。
    データ解析の知識とスキルを習得する。
    プログラミングのスキルを習得する。
  2. 研究ゼミナールⅡ(3年次・前期)
    データ解析の知識とスキルを習得する。
    プログラミングのスキルを習得する。
    研究テーマを設定し、必要な情報を収集する。
  3. 研究ゼミナールⅢ(3年次・後期)
    データ解析の知識とスキルを習得する。
    プログラミングのスキルを習得する。
    研究計画書を作成し、ミニ卒業論文を作成する。
  4. 卒研ゼミナールⅠ(4年次・前期)
    研究計画書を修正し、卒業論文を作成する。
  5. 卒研ゼミナールⅡ(4年次・後期)
    卒業論文を作成する。
教科書
プリント資料を配布する。
参考文献
受講者と相談の上、適宜指示する。
○多変量解析
  1. 永田靖・棟近雅彦(2001)『多変量解析法入門』サイエンス社(学術情報館に所蔵:図書
  2. 金森敬文(2018)『Pythonで学ぶ統計的機械学習』オーム社(学術情報館に所蔵:図書/電子ブック
  3. 荒木雅弘(2018)『フリーソフトではじめる機械学習入門 第2版』森北出版(学術情報館に所蔵:図書
  4. 金森敬文(2017)『Rによる機械学習入門』オーム社(学術情報館に所蔵:図書
  5. 川端一光・岩間徳兼・鈴木雅之(2018)『Rによる多変量解析入門』オーム社(学術情報館に所蔵:図書/電子ブック
○Python
  1. 三谷純(2021)『Python ゼロからはじめるプログラミング』翔泳社(サポートページ
  2. クジラ飛行机(2024)『実践力を身につけるPythonの教科書 第2版』マイナビ出版(学術情報館に所蔵:図書(初版, 2016)/電子ブック(初版, 2016)

  3. 辻真吾(2018)『Pythonスタートブック 増補改訂版』技術評論社(学術情報館に所蔵:図書

  4. 森畑明昌(2019)『Pythonによるプログラミング入門』東京大学出版会(学術情報館に所蔵:図書

○R
  1. 村井潤一郎(2013)『はじめてのR』北大路書房(学術情報館に所蔵:図書
  2. 山田剛史・杉澤武俊・村井潤一郎(2008)『Rによるやさしい統計学』オーム社(学術情報館に所蔵:図書/電子ブック
  3. 地道正行(2018)『Rによる統計学独習』裳華房(学術情報館に所蔵:図書
  4. Hadley Wickham, Mine Cetinkaya-Rundel and Garrett Grolemund(2024)『Rではじめるデータサイエンス 第2版』オライリー・ジャパン(学術情報館に所蔵:図書(初版, 2017)
事前・事後学習(予習・復習)の内容・時間の目安
【事前学習】
  1. 講義内容を把握してデータ解析やディスカッションができるように、プリント資料や参考文献を読み込んだり、プログラミングを行う(30h)
【事後学習】
  1. 講義内容の理解を深め、かつ定着させるために、プリント資料や参考文献を読み直したり、プログラミングを行う(30h)
アクティブ・ラーニングの内容
  1. 質問に対して、教員と学生間、または学生間のディスカッションを行う。
  2. 2〜4人程度のグループに分け、グループ単位でのディスカッションやプレゼンテーションを行う。
成績評価の基準・方法
【成績評価の基準】
データ解析に必要なプログラミング能力を備えた上で、課題を理解し、分析して報告できる者については、講義目的・到達目標に記載する能力(知識・技能、思考力、判断力、表現力等)の到達度に基づき、S(90点以上)、A(80点以上)、B(70点以上)、C(60点以上)による成績評価の上、単位を付与する。
S: 発展レベルのデータ解析を行うことができ、非常に優れた報告をすることができる。
A: 応用レベルのデータ解析を行うことができ、優れた報告をすることができる。
B: 基礎レベルのデータ解析を行うことができ、良い報告をすることができる。
C: 入門レベルのデータ解析を行うことができ、概ね良い報告をすることができる。
【成績評価の方法】
以下の2項目を基準として、受講態度(発表・質問・ディスカッション)を含めて総合的に評価する。
  1. 演習に取り組む姿勢:50%
  2. 論文、報告書、スライド、プログラム等の成果物:50%
課題・試験結果の開示方法
レポート(課題)は、次回の授業で優れたものを紹介しながら講評する。
履修上の注意・履修要件
【履修上の注意】
  1. 原則として、研究ゼミナールと卒研ゼミナールは継続して受講することなるので、テーマについてはゼミナールの教員と慎重に考えてください。このゼミナールでは、統計学に関連する科目または情報に関連する科目に興味があることが望ましいですが、今興味がなくても前向きに取り組むことができれば大丈夫です。また、担当教員の専門は経済学や経営学ではなく一般的な統計学なので、専門的な経済学や経営学のゼミナールに抵抗がある学生も歓迎します(ただし、何にでも対応できるわけではないので、必ず事前に相談してください)。
  2. ゼミナールの時間以外の行事(学内外での講義・講演会・セミナー・コンペティション等)にも積極的に参加することを期待します。
【履修要件】
  1. 「研究ゼミナールⅠ」の単位を修得していること。
  2. 「多変量データ解析」を履修することが望ましい。必要ならば、「統計学(B)」も履修すると理解が容易になる。
実践的教育
該当しない。
備考
担当教員の専門分野は数理統計学であり、このゼミナールでは必要に応じて統計学の知識やスキルについて説明する。
英語版と日本語版との間に内容の相違が生じた場合は、日本語版を優先するものとします。