シラバス情報

授業科目名
統計学
(英語名)
Statistics
科目区分
基本科目
対象学生
社会科学研究科
学年
1年
ナンバリングコード
KCAMS5MCA1
単位数
2単位
ナンバリングコードは授業科目を管理する部局、学科、教養専門の別を表します。詳細は右上の?から別途マニュアルをダウンロードしてご確認ください。
授業の形態
講義 (Lecture)
開講時期
2025年度前期
担当教員
貝瀬 徹
所属
社会科学研究科
授業での使用言語
日本語
関連するSDGs目標
該当なし
オフィスアワー・場所
適宜、研究室にて(要予約)
連絡先
kaise@mba.u-hyogo.ac.jp

対応するディプロマ・ポリシー(DP)・教職課程の学修目標
二重丸は最も関連するDP番号を、丸は関連するDPを示します。
学部DP
研究科DP
1〇/2〇
全学DP
教職課程の学修目標

講義目的・到達目標
【講義目的】データ解析の基本である数理統計学の体系を理解すること。
【到達目標】実際のデータを解析できる能力を養う。特に、一変量および多変量の正規分布を想定した解析を重点的に扱い、統計モデルと推定の概念が明確に理解でき、推定量の特性から導かれる区間推定および検定についての基礎と応用が会得できる。

授業のサブタイトル・キーワード
キーワード:統計的意思決定、データサイエンス、モデリング
講義内容・授業計画
【講義内容】
数理統計学の基本的な内容とする。

【授業計画】
以下の各項目を授業で行う。

1.統計解析の概要
2.データの整理(度数分布表、ヒストグラム、平均、分散、モード、メジアン、歪度、尖度)
3.確率の概念、定義、定理
4.確率変数、確率分布の概念
5.正規分布、その他の分布
6.二項分布とその近似
7.母集団と標本、推定量の概念
8.推定量の性質と推定量の特性を示す分布(カイ2乗分布、t分布、F分布)
9.区間推定(正規分布の平均と分散、および比率に関して)
10.検定の概念
11.検定(正規分布の平均と分散、および比率に関して)
12.相関係数と回帰分析
13.多変量正規分布
14.確率過程の概念
15.時系列解析
定期試験
 
 なお、生成系AIの利用については教員の指示に従うこと。レポート等について生成系AIのみを用いて作成することはできない。
教科書
森棟公夫、その他 『統計学 改訂版』 有斐閣(生協等で購入)
参考文献
大屋幸輔『コア・テキスト統計学』 新世社 (第2版)等
英文の文献については、授業中に指示をする。
事前・事後学習(予習・復習)の内容・時間の目安
【予習】授業で扱う予定の項目について、テキストおよび配布した授業資料の該当箇所を読んで、予習用の演習課題を提出する(30h)。
【復習】授業で扱った内容について、テキストおよび配布した授業資料の該当箇所を読んで、復習用の演習課題を提出する(30h)。
アクティブ・ラーニングの内容
ディスカッションを通じて、学生が研究テーマについて理解を深め、物事を論理的・多面的・客観的に捉えることができるようにする。
成績評価の基準・方法
【成績評価の基準】
 講義目的・到達目標の到達度に基づき、社会科学研究科規程に従い成績評価の上、単位を付与する。
【成績評価の方法】
 予習・復習課題の提出および小テストを評価する平常点(50%)と定期試験(50%)を基準とし、総合的に評価する。
課題・試験結果の開示方法
課題について授業の中で行う。
履修上の注意・履修要件
数学を用いるので、履修者は高校および大学の基礎程度を身に付けていることが望ましい。Excelを使用しながら基本から応用までを学ぶため,経営情報関連に興味があることが望ましい。なお、授業および授業内演習、さらにレポート課題等は積上げによる学習を必要とするため、予習および復習を十分行うこと。

実践的教育
該当しない。
備考
英語版と日本語版との間に内容の相違が生じた場合は、日本語版を優先するものとします。